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1 Introduction

The problem of test generation for combinational circuits is known to be NP-complete
(11, 13]. The growing zomplexity of VLSI circuits has made test generation a more
difficult task. Several Automatic Test Pattern Generation (ATPG) algorithms for
detecting stuck-at-faults in combinational circuits exist in the literature (5, 8, 10,
12, 14, 17, 18]. In [2] we have proposed a new algorithm based on a 15-valued
logic system that introduces some novel approaches to make test generation more
efficient. The advent in recent years of low-cost, high-performance parallel machines
has spurred further interest in investigating the possibility of developing fast parallel
CAD algorithms. In this report we present an approach to efficiently parallelize the
ATPG algorithm proposed in {2]. To make this report self-contained a condensed
version of [2] is presented in Appendix A.

The task of parallelizing test generation can be approached in various ways. One
common approach is to divid: the fault set among several processors, a method some-
times referred to as fault parallelism [16]. Although communication overhead is low
in such an approach, it still provides no improvement over the uniprocessor algorithm
with respect to “hard-to-detect” faults or identifying redundant faults.

All test generation algorithms use some heuristic to guide test generation. These
usually consist of testability measures in the form of controllability and observability
values for all nets of the circuit. Although several such measures exist in the literature,
experimental results suggest that no single measure is inherently superior to the others
[6]. Consequently, some researchers have suggested the use of heuristic parallelism
whereby different processors would be used to generate test(s) for the same fault with
each of them using a different heuristic to guide the search [7]. The disadvantages of
such an approach are that parallelism is limited by the number of useful heuristics
available (usually no more than 5) and that no significant improvement is possible if

a fault is “hard-to-detect.”




Instead of following either of the two approaches discussed above, we concentrate
on developing = scheme which exploits the properties of the algorithm presented ir
[2] to achieve efficient parallelism when generating tests for a fault. Added levels of
parallelism can be easily provided by including fault or heuristic parallelism. First, we
develop the concept of fault site testing in which we utilize the 15-valued logic system
in order to derive the common requirements of testing for s—a—" and s—a—1 faults at
the same site (§2). We then present a method whereby testing for different checkpoint
faults can be efficiently overlapped (§3). Both these speed-up techniques can exploit
parallelism during the Enumeration Phase. On the other hand, we can speed-up
the Propagation Phase by dividing the work of sensitizing a path, a key feature of
[2], among several processors (§4). It is important to note that our 15-valued logic
system makes it easy for such a division of tasks because subsequent merging of the
results computed by the different processors would involve simple set intersection. In
this report we also prescnt 2 method of identifying several “independent” subcircuits
during the Enumeration Phase so that their value justification can be performed in
paralle! (§5). Finally, we provide a detailed step-by-step description of cur proposed
parallel ATPG algorithm (§6). To this end we use an algorithm description language
that does not cater to any specific existing programming language but uses simple
mathematical/logical descriptions of each computational step. This approach was
preferred because it provides a much more detailed insight than a flowchart can,

without burdening the reader with actual implementational details.

2 Fault Site Testing

In this section we discuss how we can exploit the common requirements that are
imposed when we sensitize the same path from the fault site to a primary output
in order to generate tests for both stuck-at faults at this site. In this report we will

use the term net to denote the different lines of a circuit; thus the circuit consists of




four different kinds of nets — primary input (PI) nets, primary output (PO) nets,
fanout stem (FOS) nets and fanout branch (FOB) nets. In order to perform fault
site testing we cannot impose the conditions required to sensitize the fault site until
the common requirements are taken into consideration. To do this we introduce a
primitive d-cube of a failure, (pdcf), different from that in [2], that allows us to take

into account voth stuck-at faults at a given net:

n n,

0/1 A

In the pdcf shown, A is a variable which contains the information that there is a
difference between the normal and faulty circuits without imposing any constraints
about the direction of the difference. So A= {(z,7)} and the corresponding A=
{(z,z)} where z € {0,1}. The calculus used in a {0,1, A, A} system is equivalent to
that in a {0,1, D, D} system. One way of obtaining this equivalence is to replace D
by A and D Ly A. (Another way to do this would be to replace D by A and D by
A). Using this system we execute the Propagation Phase of [2] by sensiti~ing a path
p.. In the resulting deterministic test cube we set the vaiue of net n to 0 (1) and
find its corresponding deterministic test cube to generate T(p;) for an s-a-0 (s-a-1)
fault at net n. The Enumeration Phase can then be independently executed for both
Ty(p:)’s in order to generate tests for both the faults.

Example 1. We use the same circuit described in Appendix A and shown in
Fig. Al to illustrate the concept of fault site testing. Since net 23 belongs to the set
of checkpoint faults for *he circuit, we have to generate test for s-a-0 and s-a-1 faults

at this net. As explained above we start by constructing the pdcf shown below:

25 25,
0/1 A

Executing the Propagation Phase of 2] with the chosen sensitized path being the one

through nets 27, 30, 31, 36, 37. 40 and 45 yields the following deterministic test cube.
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4 7 9 10 11 1/ :8 20 21 25 25 27 28 29 30
1000 0 I 1 0 001 A A 1 0 A
31 32 33 34 35 36 37 33 39 40 41 42 43 45

A 0 0 0 0 A A A A A1 1 1 A

The value of all nets not indicared above is 0/1. To senerate tests for the two stuck-zt
faults we set the value of net 25, in the above test cube, to 0 and 1 and construct the
two corresponding deterministic test cubes. Note that these deterministic test cubes
can be constructed independent of each other. The resulting cubes are shown below
where only the nets whose values change in the process are indicated.

Stuck-at-0 fault:

24 25 26

1 1 1
Stuck-at-1 fault:

2 5 8 22 20 24 25 26
¢ 01 0 0 0 0 O

In the s-a-0 case, nets 21 and 24 are the orly variant ncts whereas nets 19 and 21
are variant for the s-a-1 situation. The Enumeration Phase for yielding tests using

these two test cubes can also be executed independently. a

3 Deriving Common Requirements for Testing

Different Checkpoints

It is well known that a test set, that detects all single stuck-a¢ faults at the PI nets,
FOB nets and the output nets of all XOR/XNOR gates of a circuit. will detect all
single stuck-at faults in the circuit [4]. Thus these nets, heunceforth referred to as

“generalized checkpoints,” constitute our initial list of target faults for which tests




have to be generated. However, if any ol these target faults is undetectable, additional

target faults mrst be considered [1, 9].

In this section we investigate the possibility of reducing the computation required
in testing several checkpoints by first considering their common requirements and
performing *his computation only once.

Consider a two-input AND gate G, shown in Fig. 1(a), where both inputs of G
are generalized checkpoints and thus belong to our imtial I'st of target ‘aults. Instead
of testing each of the inputs separately, we first impose the constraints that must be
satisfied to test the cutput n-t of G as shown in Fig. 1(b). The 1 sulting deterministic
cube can then be used to generate tests for the individual faults. Fig. 1(c) shows
the additional constraints that must be imposcd in order to generate tests for all four
faults at the inputs of G.

The above procedure should Le adopted whenever we encounter a gate which has

at least two inputs belonging to the set of generalized checkpoints.

4 Parallelism in Sensitizing a Path

The P._pagation Phase of our algorithm involves the sensitization of a chosen path,
say pi, from the fault site to a primary output (PO). This sensitization process could
be performed on several (say k) processors by dividing p; into subpaths (p;,, Pizy - - -  Pir).
The division of path p; would depend on the availability of processors and the nature
of the circuit under consideration. A feasihle approach is to divide the path into sub-
paths suchi that each processor is ailotted the task of performing sen-itization between
successive FOS nets or between a certain number of FOS nets. In such a schen.. a
single processor would be used for the Propagation Phase if the circuit under test is
a fannut : one. Furthermore, if we add the provision of indicatinz node inversion
on the dominator forest, then, using the forest, we can determine exactly which of

A or 2. should be present at the first net of every subpath. If this extra informatien




is not included, then the test cubes yielded by the different processors must first be
compared and accordingly A must be replaced by A and vice versa in the values of all
nets in the test cube yielded by sensitizing the subpath p;(;4.) if the value of the first
net on p;(;+,) and the last net on p;; are complementary. The actual sensitization

process for a subpath is similar to the Propagation Phase of [2] with the following

differences:

1. Instead of sensitizing a path all the way to some PO we now sensitize a subpath
Pi;-
2. The list of nets for which forward implication has to be performed will initially

contain only the first net of the subpath being sensitized.

3. The list of nets for which backward implication has to be performed will initially

contain all the nets, except the first one, that lie on the subpath being sensitized.

(The last two differences need not be implemented if the dominator forest contains
information about node inversion.)

Once all the processors have successfully sensitized the subpaths (else an alternate
path needs to be chosen) and the A to A conversion (if necessary) is performed the
resulting deterministic test cubes are intersected to yield a new test cube. Two
important facts should be noted at this point. The ease with which the computation
of several processors is merged by a simple set intersection operation is due to the
completeness of the 15-valued logic system. Second, the resultant test cube is not
necessarily a deterministic test cube and must consequently be converted into one.
If an empty intersection results for any net value or the resulting test cube cannot
be converted into a deterministic one. then an alternate path must be chosen. In the
situation where we get an empty intersection at a net, it might be useful to investigate
how the values of this net in the different test cubes can be used in the selection of

an alternate path.




Example 2. Once again we will use the circuit shown in Fig. Al of Appendix A
to illustrate the principles of the procedure outlined in this section. Let net 3 be the
fault site for which tests have to be generated. Assume that the chosen sensitization
path is through nets 3y, 15, 20, 23, 24, 25, 27, 30, 31, 36, 39, 42, 43 and 45. We

divide this into three subpaths as indicated below:

Path p,,: 35-15-20- 23 - 24

Path p.,: 24 - 25- 27 - 30 - 31 - 36

Path p,,: 36 - 39 - 42 - 43 - 45

Note that this division is based on allotting the path between successive FOS nets to
each processor. The initial test cube and resultant determinictic test cubes yielded by
the three processors that propagate sensitization along the above subpaths are shown
below. Nets which have a value 0/1 or 0/1/A/A are not indicated in the cubes.
Furthermore nets whose value in the deterministic test cube is unchanged from that

in the initial test cube are not indicated in the former.

Processor 1
(te,),:
3, 15 20 23 24
A A A A A
(d(te,)),:

1 2 4 5 12 13 14 16 17 18 19 21
0000 0 0O A A 0 0 0 0/A
22 25 26 21 28 29 30 31 36
0 A A 1/A 1/A 1 1/A 1/A 1/A
37 38 39 40 41 42 43 45

1/8 1/A /A /A 0/1/A 0/A 0/A 1/A




Processor 2
(tc,)a:
24 25 27 30 31 36

A A A A A A

(d(te.))a:
7 9 21 2 28 32 33 37 38 39 40 41 42 43
00 0/A A 1/A 0 0 A A A 1A 1/A 1/A 1/A

Processor 3

(te,);:
36 39 42 43 45
A A A A A

(d(te.))s:
4 10 17 18 29 34 35 37 38 40 41 44
o1 0 0 1 1 1 A A 1 1/A 1

Since the value of net 24 is A in (d(te,)), and A in (d(tc,)), we complement all
A and A values in the latter. For the same reason the A and A values of (d(tc,)),
also have to be complemented. We then intersect the three test cubes to obtain the
following one:
1 3y 4 5 7 9 10 12 13 14 15 16 17
0o 0 A 0 0 0 0 1 0 0 A A A O

o

18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 A 0 0 A A A A A 1/ 1 A A
32 33 34 35 36 37 38 39 40 41 42 43 44 45
0 0 1 1 A A A A 1 1/A A A 1 A




Note that the above is not a deterministic test cube — converting it to one changes
the value of net 6 to 0. The resultant test cube does not have any variant nets and is
hence a test for both the stuck-at faults at net 3 can be obtained from it setting the

value of this net appropriately. a

5 Identifying Independent Subcircuits During Enu-
meration Phase

In this section we discuss how we can use the dominator forest to identify “inde-
pendent” subcircuits whose value justification during the Enumeration Phase can be
done in parallel. TOPS [14] introduced the concept of “basis nodes” whereby a net
(say m) is defined to be a basis node if and only if all FOS nets that influence m
totally reconverge prior to it. Utilizing this property TOPS could postpone the value
justification of basis nodes until that of other nodes because they do not interfere
with the value justification of nets lying outside its cone of influence. Furthermore,
if the circuit does not contain any nets whose value is constant (i.e. independent
of the PIs) then the value justification of the basis nodes will not lead to contradic-
tions. Although the use of basis nodes is a generalization of the “headline” concept
introduced in FAN [10], it is still a static procedure and does not take into account
the constraints imposed by the values of the test cube generated at any stage of the
test generation. In [2] we introduced the concept of conditional headlines - nets
whose value jﬁstiﬁcation could be postponed to the last stage of test generation be-
cause they are guaranteed not to cause any contradictions (see §A.6.2). The process
of identifying these conditional headlines utilizes both the circuit structure and the
values of all the nets in the associated deterministic test cube.

In [2] the discussion of conditional headlines was restricted to nets whose value

was either 0 or 1 (see §A..6.2). We now generalize this concept so that nets with any




of the 15 values of our logic system could be investigated for a similar satisfiability
property. We will denote a variant uet as a Satisfiable Variant Net (SVN) if its
value justification is guaranteed to succeed and thus can be postponed to the last
stage of test generation. In some cases it may be possible to identify nets which
are not necessarily SVNs but their value justification depends on a subset of the Pls
which do not influence the value justification of some other variant nets. In such a
situation the value justification of the two sets of nets in question are independent
and could thus be performed in parallel. Thus it would be useful to identify these nets
— henceforth denoted as Independent Variant Nets (IVNs) - so that their value
justification can proceed independently. Note that with every IVN there is associated
a subcircuit such that the value justification of the IVN is independent of all nets
outside this subcircuit. Hence it is important to identify this subcircuit along with
the IVN.

For the remainder of this section we will refer to net as being “single-valued” if
the cardinality of the set of values associated with this net, in the deterministic test
cube being considered, is unity. Similarly a net will be termed “multi-valued” if the
cardinality is greater than unity.

We now present procedures for the identification of SVNs and IVNs using the
dominator forest and the values of the circuit nets in the deterministic test cube with
respect to which the nets in question are variant.

(a) SVN Identification:

(i) Let m, be the net under inspection. Consider the subtree T of the dominator
forest that has net m, as its root.

(i1) From T delete all nodes that correspond to FOS nets and also those nodes
that are single-valued in the deterministic test cube being considered. Note that the
removal of a node imnplies the removal of the entire subtree which has this node as its

root. Let us denote the remaining subtree as T".
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(i11) If all the leaves of T" correspond to PI nets then net m, is an SVN.

Note that T corresponds to a subcircuit (not necessarily “proper”) of the largest
fanout-free subnetwork that has net m, as its output. Moreover the only inputs of
this subcircuit at which there is a choice of values are Pls of the overall circuit. Since
all values are with respect to a deterministic test cube, the required value at net m,
can be satisfied and this value justification process will involve assigning values to
only the multi-valued PI leaves of T’ and will be independent of all nets that are not
in 7",

(b) IVN Identification:

As in the case of SVNs, in order to check whether a net is an IVN we start with
the subtree T of the dominator forest that has net m, as its root.

(¢) For every node m of T which is single-valued in the deterministic test cube in
question, consider the subtree T,, which has net m as its root.

(27) If none of the FOB leaves of 1,, are multi-valued then delete the subtree T,
from T. Otherwise, consider the FOS nets corresponding to the multi-valued FOB
leaves of T,,,. If all these FOS nets are outside T then delete the subtree T,, from 7.
After all possible deletions let the remaining subtree of T be denoted as T”.

(i32) If for every multi-valued FOB leaf of T’, the corresponding FOS net also
belongs to T’ then net m, is an IVN.

The value justification of net m, can be performed by assigniiig values to the multi-
valued PI leaves of T’ and is independent of all nets that are not in T’. However unlike
the situation for SVNs, this value justification process is not guaranteed to succeed.
It is important to note that net m, need not be the only variant net in 7. In such a
situation the value justification of all the variant nets in 7’ are dependent — however
it is independent of all nets lying outside T".

As an example of a situation where a net can be ascertained to be a IVN and yet

its value in a certain d(tcs(pi, k)) cannot be justified, consider the circuit of Fig. 2.




The output of the XOR gate is a IVN with respect to a d(tc;(p;, k)) which has the
values shown in the figure. However, enumeration will show that this net can only
have the value 1 given the values present at the FOB nets shown. The important
thing to realize, however, is that even though the value justification of a IVN may
not succeed, the justification process is independent of the rest of the circuit.

To understand the procedure for the identification of IVNs note that node m, is
a basis node if and only if all the FOS nets corresponding to the FOB leaves of T
are contained in T. In order to generalize the concept of basis nodes we can then
relax this condition to allow the single-valued FOB leaves of T to have their FOS
nets outside 7. This is because the value of these nets will not be changed during the
value justification of net m, and will not affect any nets outside T'. To further weaken
the requirement of an IVN we can delete single-valued nodes from T provided the
value justification of net m, does not result in an incorrect value at the single-valued
node m that was deleted. The value justification of net m, can affect the value of
node m by changing the value of the FOB leaves of the tree T, which has node m
as its root. Inspection of the multi-valued FOB leaves of T,, can result in one of the
following three situations:

(z) All the FOS nets corresponding to the multi-valued FOB leaves of T,, belong
toT.

(77) All the FOS nets corresponding to the multi-valued FOB leaves of T, are
cutside T'.

(712) There is at least one multi-valued FOB leaf of T,, whose FOS net is outside
T and at least one multi-valued FOB leaf of T,, whose FOS net is in T.

Situation (2) does not violate the requirement of a basis node but the FOB leaves
of T, can be affected by the value justification of m, and hence T,, should not be
deleted from 7. In situation (:1) the value justification of net m, will not affect the

value of net m provided net m, is an IVN as per the procedure described earlier.




Hence T, can be deleted from T. We now explain why we cannot delete the subtree
T.. from T when we have situation (ziz). Consider the sit.ation depicted in Fig. 3
where nets m; and m, are the FOB nets corresponding to the FOS net m;; and nets
m3 and my are the FOB nets corresponding to the FOS net m34. Let m, be the variant
net being inspected and let m be a single-valued node in its tree. Furthermore let nets
mi and m34 be multi-valued in the deterministic test cube being considered. Note
that the presence of m; and ms would prevent us from deleting T;, from T. During
the value justification of net m,, net m;; might be set to a certain value which in
turn will assign this new value to nets m; and m;. This new value of net m; might
impose certain conditions on the value of net mj in order that the required value of
net m be satisfied. Consequently this will affect the value of net my; and hence value
justification of net m, will no longer be independent of nets lying outside 7.

The distinction between SVNs and IVNs is of more importance in a sequential
implementation of the test generation algorithm because then we can prioritize the
value justification of variant nets. In this strategy nets which are neither IVNs nor
SVNs will be justified before IVNs which in turn will be justified before SVNs. Thus if

any stage results in a contradiction then the subsequent stages need not be performed.

6 Algorithm Description

In this section we provide a detailed description of our proposed parallel ATPG algo-
rithm. However, we first discuss the various arrays and data structures that we will

be making use of in the actual description.

Backwardlist: List of nets for which backward implication needs to be done.
If the value of the output of a gate changes we add it to this

list so that the corresponding implication is performed.
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Branch_Lzist:

Decisiontree:

Error:

Fault_List:

Forwardlist:

Gate_Predecessor:

List IVN:

List. SVIN:

Maznet:

No.Test_Posstible:

Predecessor:

For each FOS net this hist contains contains the corresponding

FOB nets.

Tree structure to keep track of the decision points that

have been tried in terms of the values assigned to the Pls.

Indicates the existence of a contradiction in the test

generation process.
Initial list of target faults (i.e. generalized checkpoints).

List of nets for which forward implication needs to be done.
If the value of any input net of a gate changes we add it to

this list so that the corresponding implication is performed.

Given a net, its gate_predecessor is the logic gate for which
this net is the output. Note that a FOB net does not have a

gate_predecessor.

List of Independent Variant Nets.
List of Satisfiable Variant Nets.
Number of nets in the circuit.
Boolean indicating a redundant fault.

Linked list containing predecessor nets of all nets. The inputs
to a gate are the predecessors of the output and a FOS net

i the predecessor of all its FOB nets.
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Successor: Linked list containing successor nets of all nets. The output
of a gate is the successor of all its input nets and all the FOB

nets are the successors of the corresponding FOS net.

TC[1,.., Maznet]: Test cubes to be used in the test generation process.

Entries belong to the 15 valued logic.

Vnets: List of Variant nets

In the procedures described in the next few pages we have frequently used terms
like dominator forest, node in forest, root etc. which were defined in {2] and are
given in Appendix A. Moreover in all the procedures, we have assumed that if a
called procedure changes an argument, it changes it for the caller routine also. In our
description we have used two kinds of parallelism that should be distinguished. The

construct:

parbegin
S1
S2
S3

parend

has the standard interpretation that statements S1, S2, and S3 can be executed
simultaneously or sequentially in any order. On the other hand, the construct used

most frequently in this report is:

In parallel for (loop control construct) do
begin
S1




S2
S3

end

where the loops are executed simultaneously or sequentially in any order, but within
a given execution of the loop statements S1, S2, and S3 are executed sequentially.

We have also used another construct called Initiate which initiates a called pro-
cedure at the point it is invoked. For every Initiate call there is a corresponding
Wait_for_completion where the main routine has to wait till the procedure called by
Initiate has to finish execution before the statements following the Wait_for_completion

can be executed.

Procedure DOMINATOR_FOREST
/* This procedure constructs the dominator forest which is then globally
accessed (read only) by other subroutines in MAIN */
beginl
In Parallel for all nets (m) of type PO do
TREE (m)
/* Procedure TREE (m) is performed for every primary output net m */

endl

Procedure TREE (m,)

/* This procedure constructs the tree in the forest which has net m, as its root */

beginl
Create a root node corresponding to net m,
Node list «— {m,}
/* Note that Node list is local to cach parallel processor */
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For all nodes (m) in Node list until Node list = ¢ do
begin2
For all m, € Predecessor(m) do
begin3
Child(m) «— m,
if m,, is of tyre FOB then
beging
Mark m, as a FOB leaf
Remove m, from Branch.list of Predecessor(m,)
/* Note that Branch.ist is a global variable and all
the parallel processors have read/write access to it */
if Branch ist of Predecessor(m,) = ¢ then
begind
if all nets in Successors(Predecessor(m,)) are in this tree then
begin6
m, «— First common ancestor of Successors(Predecessor(m,)
Child(m,) «— Predecessor(m,)
Mark Predecessor(m,) as a FOS node
if Predecessor(m,) is of type PI then mark it as PI leaf
else add Predecessor(m,) to Node_list
end6
else if Predecessor(m,) is of type PI then create a single-node

tree for it and mark it as both a PI and FOS node

else Initiatel {TREE (Predecessor(m,))} on another processor
end5 |
end4

else
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begin7
if m,, is of type PI then mark 12, as PI leaf
else add m, to Node list
end7
end3
Remove m from the Node_list
end?2
Wait_for_completion (Initiatel)

endl

Procedure RESET_TC (TC)

beginl
Fori =1 to Mazxnet
TCi] «— o/1

endl

Procedure 3VP
/* This procedure performs all the implications of a 0 and a 1 at FOS nets
and stores those whose contrapositive assertions may be useful later */
beginl

RESET_TC (TCo)

TC1+— TCo

In Parallel for all nets (n) of type FFOS do

begin2

Forwardlist — {n}

In Parallel for 2 = o0 and 1 do




begitd
TCi[n] «— 2
FORWARD (TC:, DTC?)
For 7 = 1 to Maznet and 3 # n do
beging
if DTCi[jl = L, # o/ 1 then
if (DTC1j],G.te-Predecessor(3)) € (L,,G) Table then
/- The (L,,G) Table is Table A7 of the Appendix and
tells us whether this particular implication is worth stering.*/
Store (2 at net n ==> L, at net j)
end4
end3
end2

endl

Procedure PDCF (n,TC1)
/* Net n is the favlt site*/
beginl
Initialize Token for all nets to False
RESET_TC (TCh)
TFLAG[n;| «—— True
Checklist «—— {n}
/* The following segment identifies all True token nets
and initializes their value to ¢/1/A/A */
For all net- m € Checklist until Checklist = ¢ do

begin2
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In Parallel for all m, € Successor(m) do
begin3
TFLAG[m,) «— True
Add m, to Checklist
TCa[m,) «— o/1/A/A
end3
Remove m from Checklist
end?2
TCi[n;] — A
Forwardlist «—— {n;}
Backwardlist «—— ¢
In Parallel for all my € Dominators(n) do
begin4
TCi[my «—— A/A /* Setting the value of the dominators of (n)*/
Add my to Forwardlist /* Initial list of nets for which forward and
backward implication has to be performed */
Add my to Backwardlist
end4
endl

Procedure FORWARD (TC,TC")
/* The calling routine provides TC, while FORWARD returns TC' to it */
beginl

TC' — TC

For all nets (m) in Forwardlist until

‘Forwardlist = ¢) or (Error = True) do




begin2
if m is not of type PO then
begin3
if m is of type FOS then
begin4
Modify T'C’ by assigning the value of m to all its FO B nets
add all the FOB nets of m to Forwardlist
end4
else if m is the input of a logic gate then
begin)
In TC' forward imply value of net m through gate
if gate output = ¢ then Error = True
else if gate output changes then add output net
to Forwardlist and Backwardlist
end5
end3
Remove m from Forwardlist
end?2
if Error = True then TC' «— TC
endl

Procedure BACKWARD (TC,TC")
/* The calling routine provides TC, while BACKWARD returns T'C’ to it */
beginl

TC' +— TC

For all nets (m) in Backwardlist until




(Backwardlist = ¢) or (Error = True) do
begin2
if m is not of type PI then
begin3
if m is of type FOB then
begind
In T'C’ assign the value of m to all nets in
the set (Successors(Predecessor(m)) — {m})
add all the nets in this set to Forwardlist and Backwardlist
end4
else if m is the output of a logic gate then
beginb
In T'C’ backward imply value of net m through driving gate
if any input (m;) changes then
if value of m; = ¢ then Error = True
else
beginb
add m; to Forwardlist and Backwardlist
forward imply new input values and add m
to Vnets if appropriate
end6
Use 3VP implications to change value of any other net (if
possible) and add them to Forwardlist and Backwardlist
end5
end3
Remove m from Backwardlist

end?2




Error = True then TC' «— TC
endl

Procedure DETERMINIZE (TC, DTC)
/* The calling routine provides TC, while DETERMINIZE ;eturns DTC to it */
beginl
Error «— False
Repeat
TC' «— TC
FORWARD (TC', TC")
if Error = False then
BACKWARD (TC",TC')
if Error = False then
TC «+—— TC’
/* Repeated forward and backward implications are performed
until a deterministic test cube or a contradiction obtained */
until (Forwardlist = Backwardlist = ¢) or (Error = True)
if Error = False then DTC «— TC
endl

Procedure PROPAGATE (TC,DTC)

/* This procedure divides the propagation path into subpaths and then computes
the deterministic test cube that considers all the propagation requirements of

the path. This routine is called by providing T'C and the resulting cube

is returned as DTC */

beginl
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Use path heuristic to identify path p; and subpaths (pi, Piay - - -y Pik) to
be sensitized
/* Notation: First net on subpath p;; is termed m;; */
Error «—— False
In Parallel €50 J = 1,25...,% 4
begin2
TC;; — TC
Use node inversion information from dominator forest to set the value
of nets on path p;j to A or A or A/ A (as appropriate) in TC;;
/* Note that m,, is set to A */
Forwardlist «—— {all nets on p;;} - {Mi(j+,)}
Backwardlist «—— {all nets on p;;} - {m;;}
/* The Forwardlist and Backwardlist are initialized as above in
order to avoid the unnecessary duplication of computation that
is common to several processors */
DETERMINIZE (TC;;, DTC;;)
end2
if Error = True then
begin3
/* Sensitizing path p; does not yield test */
If alternate path available then PROPAGATE (T'C, DTC)
else No.Test_Possible «+— True
end3
else
begin4
TC — ﬂle DTC,;

Set up Forwardlist and Backwardlist using result of above step




DETERMINIZE (TC, DTC)
end4
endl

Procedure FOB_LEAVES (7.:)
beginl
List «— ¢
From Dominator forest find leaves of subtree that has m as root
If leaf is of type FOB then add it to Lzst
return List

endl

Procedure PRIORITIZE_VNETS (DTC)
beginl
In Parallel for all nets (m,) in Vnets do
begin2
Consider the subtree T of the dominator forest that has m, as root
In T fcllow multi-valued paths from every child of m, towards the
leaves such that no path passes through FOS nets
if all paths end at leaves of type PI then add m, tc L:st_SV N,
delete m, from Vnets and add these PI leaves to Choicelist(m,)
/* List_SV N contains all the Satisfiable Variant Nets
Choicelist(m,) contains all the PI nets to be used in the
value justification of a net m, which is either a SVN or an IVN */
else

begind
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Checklist «— {All nodes that are children of m, in dominator forest}
For all m € Checklist until Checklist = ¢ do
begin4
if m is single-valued then
begind
add all children of m to Checklist
remove m from Checklist
endd
else
begin6
List1 «—— FOB_LEAVES (m)
In_Stem «— False
Out_Stem +— False
Abort «—— False
/* In_Stem and Out_Stem keep track of whether any net
in List1 has its FOS net inside or outside T */
For all m, in List1 until (List1 = ¢) or (Abort = T'rue) do
begin7
if m, 6 Dominator(Predecessor(m,;)) then
In_Stem «— True
if m, ¢ Dominator(Predecessor(m,)) then
Out_Stem +— True
if In.Stem = Out_Stem = True then Abort «— True
else remove m, from List1
end7
if In.Stern = False and Out_Stem = True then add m
to Delete_Nodes




end6

end4

if Abort = False then

begin8
From T construct another tree T by deleting all the

nodes (and their subtrees) that belong to Delete.Nodes
List2 «— {All the multi-valued FOB leaves of T'}
IVN «— True
For all m; in List2 until (List2 = ¢) or (IVN = False) do
begin9
if Predecessor(m;) belongs to tree T then remove m; from List2
else IVN «— False
end9
if IVN = True then add m, to List_ IV N, delete m, from Vnets
and add all multi-valued PI leaves of T' to Choicelist(m,)

[* List IV N contains all the Independent Variant Nets */
else Choicelist(m,) «— ¢

end$

else Chotcelist(m,) — ¢

end3
end2
endl

Procedure ENUMERATION (DTC)
beginl
TC /— DTC
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For all nets (m,) in Vnets until (Vnets = ¢) or (Decisiontree = ¢) do
repeat
begin2
Use controllability measures to identify a candidate PI (m;) from m,
Forwardlist «— {m;}
TC[m;] «+— Value
/* Assign a value to a PI for value justification of m, */
FORWARD (TC,TC')
Store PI and Value in Decisiontree
TC «/— TC'
end?2
until (objective at m, met) or (Dectsiontree = ¢)
if Dectsiontree = ¢ then
begind
No_Test_Possible
Exit ENUMERATION
end3
else
begin4
Backwardlist «— ¢
In Parallel (indexed by z) for all nets (m;,,) in List_ IV N do
begind
repeat
Use controllability measures to choose a net (m) from Choicelist(m,,,)
Forwardlist «— {m}
TC;[m) +— Value
FORWARD (TC;, TC!)
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if m is a PI then store PI and Value in Decisiontree
TC;, «— TC;
Remove m from Choicelist(m,,,)
if mis a FOS net then add m to Backwardlist
until (Choicelist(mi.,n) = @) or (Decisiontree = ¢) or (objective at m;,,, met
endd
if (Choicelist(mi,n) = @) or (Decisiontree = ¢) then
begin6
No_Test_Possible
Exit ENUMERATION
end6
else
begin7
TC «— U TC;
DETERMINIZE (TC, DTC)
if Vnets # ¢ then
begin8
ENUMERATION (DTC)
TC «/— DTC
end8
In Parallel (indexed by %) for all nets (m,,,) in List_SV N do
"begin9
repeat
Use controllability measures to choose a PI from Choicelist(m
Forwardlist — PI
TC,[PI]| «— Value
FORWARD (TC;, TC!)

.wn)
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TC; «— TC:!
Store PI and Value in Decisiontree
until objective at m,,, met

end9

TC «— Uy, TC;

DETERMINIZE (TC, DTC)

end7
end4

end

Procedure MAIN
beginl .
READ_DATA
Construct Fault_List, Predecessor, Successor
parbegin2
DOMINATOR-FOREST
3vp
parend2
For all n in Fault_List until Fault_List = ¢ do

begin3

if m drives gate G such that any other input(s) of G are in Fault_List then

begin4

Remove these input nets from Fault-List and add them to Faultset

/* Faultset contains the different checkpoints to be tested */

PDCF (m,, TC) /* m, is the output of G */
end4
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else PDCF (n,TC) /* In this case Faultset = ¢ */
Remove n from Fault_List
PROPAGATE (TC,DTC)
if No.Test_Possible = False then
begind
PRIORITIZE_VNETS (DTC)
Using Faultset and G create list L. of ordered pairs (net m,, value l.)
corresponding to all checkpoint faults that can be enumerated in parallel
/* If Faultset = ¢ then L. = {(n,0), (n,1)} */
In Parallel for all (m,l.) € L. do
begin6
TC «— DTC
TClm «— I
DETERMINIZE (TC,DTC')
ENUMERATE (DTC")
if No_Test_Possible = False then return (DTC’, Test)
else ADDITIONAL_FAULTS (m,L.)
/* If any of the generalized checkpoint faults are determined to be redundant
then the above step will determine the additional faults to be tested */
end6
endd
else
begin7
ADDITIONAL_FAULTS(m,4, 0)
ADDITIONAL_FAULTS(m 4., 1)
/* Net myq.s is the net used in the construction

of the PDCEF i.e. either net = or net m,*/
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endl

end7
end3




7 Conclusion

In this report we have presented some new techniques for efficiently parallelizing
the 15-Valued Test Pattern Generation algerithm introduced in [2]. This was ac-
complished by dividing the path to be sensitized into several subpaths and using a
separate processor to perform the sensitization of each subpath. This is possible be-
cause of the strenath of the 15-valued logic system used. To make the algorithm even
more efficient we overlap the testing of several ceckpoints and introduce the concept
of fault-site testing wherc the propagation phase for testing both the stuck-at faults
at any net is executed simultaneously. We have also presented a procedure to identify
“independent” subcircuits whose value justification during the Enumeration Phase
can be performed independently. It is important to note that in each ot the paral-
lelization techniques proposed the communication cveihicad is low bhecause it involves
only the iatersectior. of test cubes whose entries are elements of the logic system nsed.
The analysis of the different ideas introduced in this report suggest that an imple-
mentation in an MIMD environment can prove to be a significant improvement in the

area of testing.




Appendix

A A 15-Valued Algorithm for Test Pattern Gen-

eration

A.1 Introduction

In this appendix we present an ATPG algorithm, for detecting single stuck-at-faults in
combinational circuits that contain NOT, AND, NAND, OR, NOR, XOR and XNOR
gates. This algorithm is based on a 15-valued logic system and introduces some novel
approaches to make test pattern generation more efficient.

Test generation involves considering the value of a net in the good and the faulty
circuit. This can be done by representing the value of a net as an ordered pair (b,, by)
where b,(b;) is the value of the net in the good (faulty) circuit [15]. Thus the value
of a net can be one of the elements of the set U = {(0,0),(0,1),(1,0),(1,1)}. In the
process of generating tests it might not be possible to uniquely specify the value cf a
net as one of the elements of U. However, we may already know that a net cannot
assume one or more of these values. We incorporate this information by defining the
value of a net as one of the 15 nonempty subsets of U. We denote these 15 sets
as 0,1, D, D, 0/1, 0/D, 1/D, 0/D, 1/D, D/D, ¢/1/D, 0/1/D, 0/D/D, 1/D/D,
and 0/1/D/D where 0 = {(0,0)}, 1 = {(1,1)}, D = {(1,0)}, D= {(0,1)} and ¢/”
denotes set union. Note that U =0/1/D/D. These 15 values are equivalent to the
elements of the logic system developed by Akers [3] to provide a tool for test gen-
eration. Tables Al, A2 and A3 represent the AND, NOT, and XOR f{functions in
our 13-valued system for the values 0, 1, D, and D. The complete table for all 15
values can be easily constructed from the given tables by using the set union oper-

ation. The tables for all other logic functions can be obtained from these three tables.
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Table A1. AND table Table A2. NOT table Table A3. XOR
table

Using this notation we will define a sensitized net as one whose value is either D,
D, or D/ﬁ. Furthermore, if all the nets along a path in the circuit are sensitized,
then the path is said to be sensitized. As will be seen later on, this 15-valued system
exploits the linearity of XOR/XNOR gates during test generation. It also allows us
to characterize all restrictions that are imposed by a fault and the particular circuit
path chosen in order to propagate its effect. '

There are three distinct phases in the algorithm presented here:

(3) Pre-processing phase (§A.2). In this phase we construct a set of trees based
on the interdependence of circuit nets. Among other things this forest will be used
to easily identify which circuit nets must be sensitized to derive a test.

(:1) Propagation phase (§A.3). In this phase we deliberately sensitize a single
path from the fault site to a PO and find all the resulting deterministic forward and
backward implications. In the process other paths may get sensitized. Path selection
is the only choice made in this phase——implications are based on all the constraints
that must be satisfied in order to sensitize the chosen path. This is possible because
of the completeness of the 15-valued system and the use of deterministic implication
rules.

(i:1) Enumeration phase (§A.4). In general, the test cube constructed by the
Propagation Phase will not yield a test-—particularly because no arbitrary choices

were made. Thus there may be gates whose input net values contain combinations




capable of desensitizing the chosen path. In this phase we use an enumerat.ca pro-
cedure to choose values for the PIs so that such combinations can never occur.

To illustrate the above phases of our algorithm we will consider the fault net 3
s —a — ¢ iu the circult of Fig. Al

In order to make the last two phases more efficient we have developed some speed-
up techniques (§A.6). One is the extension of the contrapositive procedure presented
in SOCRATES [18] for backward implying 0 and 1 values. However, our procedure
not only generates the contrapositive assertions for all 15 values of our system, but
also requires less computation and storage than SOCRATES. We will also present
a procedure that not only takes into account the circuit structure but also the con-
straints imposed by the values of a test cube in order to identify nets whose value
justification can be postponed until the end. Furthermore, we will show how backward
implication of the values that desensitize the chosen path can help in the selection of

PI values during the Enumeration Phase.

A.2 Pre-processing Phase
A.2.1 Construction of Dominator Forest

The importance of identifying nets that must be sensitized for a fault to be detected
was first highlighted by Akers [3] and later by Fujiwara and Shimono [10]. As pointed
out in TOPS [14], the concept of graph dominators [19] can be used to identify the
nets which must be sensitized to detect a fault. In the context of test generation we
term the set of dominators of a net m as the set of all nets in the circuit which lie
on every path from net m to any PO. By definition, net m is a dominator of itself;
however, for ease of notation we define D(m) as the set of all dominators of m except
m itself. To account for multiple output circuits the concept of dominator tree can
be extended to that of a forest. We present here a procedure to construct this forest

for a given circuit. This forest will not only be used to compute the dominators for a
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particular fault site; but also for the sensitization of subpaths, selection of Pls in the
enumeration phase and generation of the initial list of target faults.

We construct a set of trees such that every net of the circuit corresponds to a
node in one of the trees in the forest. We start by creating as many trees as there are
POs such that each PO corresponds to a root of a tree. However, new trees may be
created during the procedure. Thereafter, each node which has noi been marked as
a leaf is inspected and the tree construction is continued as follows:

(i) If the node m; being considered corresponds to the output net of a logic gate G;
in the circuit, then every input net of G; becomes a child of this node m;. Furthermore,
if the input net is a PI it is marked as a PI leaf. If the input net is a FOB, then it is
marked as a FOB leaf.

(ii) If the node m; being inspected is a fanout stem (FOS), then wait until all the
FOBs corresponding tc this FOS have been marked as FOB leaves. Then find the
immediate ancestor of all these FOB leaves. If such an ancestor exists, then make m;
a child of this ancestor node. If it does not, then start a new tree with m; as a root.
In either case, mark m; as an FOS node—if it is also a PI, then it must be marked
as a PI leaf also.

The above procedure is continued until every net of the circuit becomes a node in
some tree of the forest.

Note that the leaves of the trees in this forest correspond to the checkpoiats, i.e..
the PIs and the FOBs. Thus our initial list of target faults consists of all leaves of the
trees of the dominator forest and the output of all XOR/XNOR gates [4]. However,
in case any of these target faults are undetectable additional target faults must be
considered [1, 9].

The root of any tree in the constructed forest is either a PO or a FOS. If any tree
has a single node, then this node must correspond to a PI which is also a FOS. The

set D(m) contains all the nodes encountered when traversing the tree (in which m is
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a node) from m to the root.

The “basis nodes,” as defined in TOPS [14], can also be identified easily from
the dominator forest. However, keeping in mind that a node cannot be a basis node
unless all FOS nets that influence it have ccmpletely reconverged prior to it, we adopt
a simpler approach of identifying which nodes are NOT basis nodes. Thus, instead
of inspecting each node to verify whether it is a basis node or not, we pick one FOS
net at a time to generate the set of nodes which are NOT basis nodes. Let there be
k FOS nets denoted by m;, : = 1,2,...,&. Furthermore, let the FOS net m; have n;
FOB nets denoted by m;;,m,2,...,mn,. It can be shown [2] that the set of nodes
which are NOT basis nodes is given by
U ]LJI [D(mi;) U {mi;}] — D(my)

Consequently, all nodes not belonging to the above set are basis nodes.
The dominator forest for the circuit in Fig. Al is shown in Fig. A2. Note that

the only basis nodes for this circuit are the Pls.

A.2.2 Selection of pdcf

The selection of the primitive D-cube of the failure (pdcf) in DALG [17] may involve
arbitrary choices which can result in mistaken decisions causing costly backtracking.
We avoid this problem by introducing a fictitious gate G; at the site of the fault. If
the fault is at net n we introduce G between net n and a newly created net n; as
shown in Fig. A3. We now connect n; to all nets which were previously connected
to n. Accordingly, the unique pdcf depends only on the kind of stuck-at fault.
n  ny
n s-a-0 1 D
n s-a-1 0 D
Thus in our example we will modify Fig. Al to include the gate shown in Fig.

A4
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A.2.3 Token Assignment

The goal of this stage is to identify which circuit nets can or cannot be affected by
the fault. In order to convey this information we associate with every net a Boolean
token. This token will be TRUE if and only if there exists a path from n; to any PO
which passes through this net. These tokens can be computed by a single forward pass

through the circuit. Table A4 shows the Boolean token assignment for cur example.

Nets with 34, 14, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27,
TRUE Token | 28, 30, 31, 36, 37, 38, 39, 40, 41, 42, 43, 45

Nets with 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 17, 18,
FALSE Token | 29, 32, 33, 34, 35, 44

Table A4. Token assignment for net 3 s —a — 0 in Fig. Al

A.3 Propagation Phase

In this phase we will sensitize a single path from net ny to a PO, however, other paths
may also get sensitized. In a manner 2ralogous to DALG [17] we will use test cubes
whose entries reflect the current values of all nets during any stage of test generation.
The entries of any test cube, tcy, are elements of our 15-valued system.

We initialize this phase by constructing tc, in the following manner:
1. Set nets n and ny to the values specified by the pdecf.

2. Assign D/T)- to all nets belonging to the set D(n).

3. Set all nets with FALSE tokens, except net n, to 0/1.

4. Assign 0/1/D/D to all unassigned nets of the test cube.

In our example D(3) = {31,36,45}, and the resulting tc, is given below where

only nets whose entries are different from 0/1 and 0/1/D/D are shown.
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3 3 31 36 45
1 D D/D D/D D/D

For each test cube tci generated at any stage of our algorithm we find its corre-
sponding “deterministic” test cube, d(tci). We define a d(tci) as one in which no
entry can be changed without making some arbitrary choice(s) in one or more net
values. That is, all unique implications of the net values must be considered. Rules
for forward and backward implication procedures to be used in constructing d(tcy)
from tc; are given in §A.5. If in any d(tc;) we have a sensitized path p; from the
fault site to any PO, then the Enumeration Phase is invoked. This test cube, d(tc;),
is denoted as Ty(p;). The d(tc,) for our example is shown below. Only the entries for
nets whose values are different from those in te, are listed. In fact, for each cube that
we construct only the entries whose values are different from those in the preceding

one will be explicitly shown.

9 14 15 16 19 20 21 22 23 30
o b D D oD 0o/D o/D 0/1/D 0/1/D 0/D/D
32 33 37 38 39 40 41 42 43

o o D/D D/D D/D 1/D/D 1/D/D 1/D/D 1/D/D

If d(tc,) cannot be constructed because contradictions were encountered, then
there exists no test for the fault. Otherwise we have a sensitized path from n; to all
the FOB nets corresponding to the first FOS node (could be n itself!) encountered in
traversing the appropriate tree of the dominator forest from n to the root. If there is
no FOS encountered, then we have a sensitized path from n; to the PO corresponding
to the root of the tree. In our example, since net 3 is an FOS we have sensitized paths
only until its FOB nets, i.e., 14, 15, and 16.

At this point we have to select one of the FOB nets, say m;, to extend the
sensitized path. To obtain tc, we should sensitize all nets belonging to the set D(m,)—

D(n) by intersecting their values in d(tc,) with D/D. If any empty intersection
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results, then the sensitized path cannot be extended through m, and alternate paths
should be investigated. Note that this step is implicitly perfo.ming the equivalent
of the X-path check [12] while setting up which gate outputs should be sensitized.
As stated earlier, we would then construct d(tec,). If contradictions occur while
constructing d(tc,), then an alternate path must be selected. Otherwise we have a
sensitized path from ny to at least the FC3 nets corresponding to the next 'OS net
or some PO. Assume that we extend the sensitized path in cur example through net
16. We use D(16) — D(3) = {21} so that net 21 has the value D in tc,. In the
resulting d(tc.) shown below we have sensitized paths till the FOB nets 37, 38 and
39.

6 30 31 3 37 38 39 40 41 42 43

1 0D D D D D D /D /D 1/D 1/D

The process of extending the sensitized path by selecting a FOB net, constructing
a tcy and its corresponding d(tc) is continued until we reach some PO and have
constructed Ty(p;). If contradictions occur, then alternate paths should be investi-
gated. If all possible paths give contradiction, then no test exists. Note that all
possible single paths need not be explicitly investigated to arrive at this conclusion.
Proceeding with our example, let us extend the sensitized path through net 39. Since

D(39) — D(36) = {42,43}, the tc, shown below results.

42 43
D D

However, the attempt to construct d(tc,) fails as shown below.

Steps in d(tc,) construction:
., 40 3510 34
e — BLH

111
29 41718 20 23 24
(1) — — — = e
1 000 D 1/D 1/D
25 26 27 28 30 (Contradicti
. L L S _
1/D /D 1/D 1/D (1/DYN(0/D) = ¢ ontradiction)
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Thus we go back to d(tc,) and choose another path—say through net 37. The

resulting tc, sets the value of net 40 to D and the d(tc,) constructed from it is shown

below:
4 10 11 17 18 20 23 24 25
1 0 0 1 1 0 0/t 0/1/D 0/1/D
26 27 28 29 34 35 41 42 43 45

0/1/D ©0/1/D ©0/1/D 0 0 0 1 1 1 D

We now have a sensitized path (say p,) from 35 to a PO, and thus d(tc,) is Ty(p,).

Note that Ty{p;) represents all the constraints that must be imposed to sensitize
path p;. Since the backward implication rule does not make any arbitrary choices,
there may be gates where the output value is a proper subset of the value implied
by the input values, i.e., the input values include combination(s) that will desensitize
path p;. We define the output nets of such gates as variant nets. If a net is not
variant it is defined to be invariant. In our example the only variant net w.r.t.
Ty(p.) is net 30.

If there are no variant nets in Ty(p;), then we have already obtained a test for the

fault. Otherwise the Enumeration Phase must be invoked to determine a test.

A.4 Enumeration Phase

The goal of this phase is to obtain a test by specifying the unassigned PIs in T¢(p:)
such that all nets are invariant and have values that are subsets of their corresponding
values in Ty(p;).

We choose an unspecified PI I, in Ty(p;) and assign a logic value (0 or 1) to
it, thereby creating a new test cube which we denote by tc,(p;,1). Now we find
its corresponding deterministic test cube d(tc;(p;, 1)) and update its list of variant
nets (note that new variant nets may be created). However if d(tc/(p;, 1)) cannot be

obtained due to some contradiction, then we complement the entry for I, in te;(p;, 1)
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and construct its corresponding d(tcs(pi,1)). If this also leads to a contradicbtion,
then there exists no test corresponding to Ty(p;). If we are successful in constructing
d(tcs(pi, 1)) we now assign a logic value to some other unspecified PI I,, thereby
creating tcs(pi,2). As before we must construct d(tcs(pi,2)) and update its list
of variant nets. This procedure is continued and we traverse the decision tree, in a

manner analogous to PODEM {12], until one of the following two conditions occur:

e The list of variant nets corresponding to some d(tcs(p;, 7)) becomes empty.
This indicates the values of the Pls in d(tcs(pi,j)) represent test(s) for the
fault.

e The decision tree is exhausted, i.e. no test exists.

For sake of completeness we denote Ty(p;) as d(tcs(p;, 0)).

We now continue with our example for the fault net 3 s—a—0 in the circuit of Fig.
Al. As stated earlier, net 30 is the only variant net w.r.t. Ty(p,). By inspecti_g the
dominator forest we notice that nets 7 and 8 are the PIs which are “closest” to net
30. We thus start by setting net 7 to 0——however, this does not change the value of
any other net. We continue by setting net 8 to 0-——once again no new changes result.
We now use the dominator forest to reach the FOS net 24 and thus determine that
nets 2 and 5 are the next “closest” PlIs. We could, for example, set net 2 to 0—the
only resulting change is a 0/D at net 22. Net 30 is still the only variant net, so we
now set net 5 to 0. This changes the value of net 23 to 0 and that of nets 24, 25, 26,
27, and 28 to 0/D. Also, all nets are verified to be invariant, thus a test has been
generated.

The algorithm described so far can be substantially improved by the introduction

of several speed-up techniques which we discuss in §A.6.
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A.5 Construction of Deterministic Test Cubes

In a d(tcx) all deterministic implications (no arbitrary choice) of all entries of the
test cube tcy are fully considered. To construct d(te,) from te, we perform backward
and forward implications of all nets whose values in tc, are different from 0/1 and
0/1/D/ﬁ and all other nets whose values change during this implication procéss. In
the general case, when we are constructing d(tcy) from tcy, we start by considering the
forward and backward implications of the nets whose values in tcy are different from
those in the last successfully constructed deterministic test cube and that of all other
nets whose values change during this implication process. During the construction of
d(tcy) from tey, if a backward or forward implication request results in a new value
L'J- for any net m; of the circuit, then we should update the corresponding net entry
L; by setting it to L; NL.. If this intersection yields the empty set then d(tc) cannot
be constructed.

In order to obtain d(tc;) the process of forward and backward implications should
be continued until no more changes occur in the values associated with any net. Note
that this process will terminate in a finite number of steps because we are performing
set intersection on finite sets.

The rules for constructing deterministic test cubes must include the provision for
appropriately handling the values of nets associated with fanout points and should

also take into account the information provided by the token vectors.

A.5.1 Forward Implication

The process of forward implications of the values associated with every net is done
with the help of Tables Al, A2 and A3. These tables are a generalization of the
truth tables of the respective gates. For gates with more than two inputs the method
adopted is similar to that used by Akers [3]. We view every gate as being constructed

out of 2 input gates and use the existing values at the inputs of a gate to gencrate a
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new value for the output. Depending on the gate in question, appropriate tables are
used.

Suppose we are performing forward implications due to change(s) in input(s) of a
gate G whose output is net m. Let Lo be the set of values associated with net m in
the test cube prior to forward implication being performed. Also let Ly be the value
obtained at net m bv using the new values of the inputs of G. Net m will then be set
to Lo N Ly unless Lo N Ly = @ which implies a contradiction. Four other situations

are possible:
1. Lo = Ly. No further action is needed for this forward implication.

2. Ly C Lo (proper subset). We now have to consider the forward implication of

the value of Ly at net m on all gates driven by G.

3. Lo C Ln. We now have to perform a backward implication of the value Lo at

net m. This may result in further changes in the inputs of gate G.

4. Lo € Ly and Ly € Lo. Both forward and backward implications should be

performed.

A.5.2 Backward Implication

The process of backward implication involves determining the changes required at
the inputs of a gate in order to satisfy a requested change at the output. A change
in the value of a net will mean that one or more possible values associated with the
net has been deleted. In that sense an input change can be made only if the deleted
value can never be used with the existing values at the other inputs to generate any
of the requested output value(s).

The backward implications rules for a two-input AND gate is shown in Table A3.
Note that the element @ has been included in this table to detect an unsatisfiable

backward implication request.




x 0 1\ D | D
*x
0 0/1/D/D 0| 0 )
1 0 1\ D | D
D 0/D 0{1/D| 0
D 0/D 0| 0 175—

* Requested Output

*x Existing value at one input

Table A5. Backward implication for a 2-input AND gate

The complete iable for all 15 values is obtained by the set unica opera‘ion. The
resulting table is equivalent to that proposed by Akers [3]. To perform backward
implication for a two-input AND gate we reference the table using the requested value
at the output and the existing value at one input to generate the value of the other
input. Since the XOR gate is linear, Table A3 can be used for backward implication
also. Thus Tables A2, A3 and A5 can be used to perform backward implication for
any two-input gate. Irrespective of the gate in question, the value generated by the
appropriate table must be intersected with the existing value of the input to generate
the new value of the input. Analogously, the new value of the input and the requested
value of the output must now be used to generate the new value of the other input.

As before, any gate with more than two inputs will be represented as a cascade

of two-input gates. Consider an n-input gate G represented as a cascade of (n — 1)

tw--input gates Gy, Gz,...,G.-2 and G,_y, with net numbers as shown in Fig. A3.
Assume that the values at nets 1,2,...,n are X;, X~ ... X, respectively. \We first
use forward implication of these values to compute Y7,Y5,. .., ¥, _5, the values of nets

n+1,n+4+2,...,n+(n—2) respectively. Then using the value Z, which is the rcquired
value at the output of gate G, we apply the backward implication rules for gate G,,_,
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to obtain Z,_, and X!, the new vziues of nets n 4 (n - 2) and n respectively. Having

done that, we proceed backwards and apply the backward implicatisn rules for all
the gates, one at a time, ending with gate G,.
It has been shown in [2] that the above procedure will stabilize in a single pass,

unlike the approach followed in [3] which r ay require several passes.

A.6 Speed-up Techniques
A.6.1 Use of th: Contrapositive

The use of the contrapositive to reduce the search space wis first sugzested by Schulz,
et al., in SOCRATES [18]. However, the procedure presented in SOCRATES can only
be used to backward imply the value . or 1.

In our 15-valued system, assume that the forward implication of a value L, at net
m, with 0/1/D/D at all other nets yields the value L, at net m,. Thus when we
require a value L) C((0/1/D/D)—L;) at net m,, then the value of net m; cannot
contain any element of J;. Howcver, in some cases the backward implication may
vield the same information. Hence it is useful to identify the conditions under which
a backward implication cannot yield the information provided by a contrapositive as-
sertion. In such cases we may store this information for possible future use. To obtain
the implicatious for all possible valucs of L; we only need to perform implications for
each individual element of 0/1/D/L. Thus the procedurc to obtain the implications
for the 13-valued system, henceforth referred to as 15-VP, would be to set the value
of net 1, to each of the values 0. 1, D and D, one at a time and with 0/1/D/D
at ali other nets, and obscrve the implied value at net mj. It can be shown that the
information yielded by 15-VP can be obtaired from a simpler procedure that utilizes
a 3-valued (0,1.0/1) logic syvstem [2]. In this procedure, which we denote as 3-VP,
we sct the value of net my to each of the values 0 and I, one at a time and with 0/1

at all other nets, and observe the impiied value at net ma. Table AG shows liow the
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information yielded by 15-VP can be obtained by the results of 3-VP.

Value applied Implied value at net ma
at net m; (i) (i) | (1) | (v) | (v) (v1) (vid) {viti) (iz)
3-VP 0 0/1 0 1 0 1 ] 1 0/1 0/1
1 0/1 0 1 1 ¢ 0/1 . 0/1 0 1
15-VP 0 o/1/D/D | © 1 0 1 0 1 0/1/D/D | 0/1/D)D
1 0/1/D/D | o 1 1 o | o/1/D/D | 0/1/D/D 0 1
D 0/1/D/D | © 1 D | D o/D 1/D 0/D /D
D 0/1/D/D | o© 1 D\|pD o/D /D o/D /D

Table A6. Relationship between 3-VP and 15-VP

We now present a procedure which, when incorporated into the pre-processing

phase, can derive all the contrapositive assertions for our 15-valued system. For ease

of explanation we define the values 0 and 1 as “singleton” values.

1. Construct two test cubes tc,, and te,, in which the values of all nets of the

circuit are set to 0/1.

Q™)

value Ly(L,) and perform a forward implication of this value.

Let L, (L3) be the implied value at the output net m, of gate G.

In e, (tco,) change the value of net my, where m, is a FOS net, to the singleton

3. If both L, and L3 are singleton values, then both these implications (L; at

m, = L, at m, and L; at m; = L3 at m;) need to be stored.

4. If only one of the values (say L) is singleton and this value L; and the gate G

happen to be one of the combinations listed in Table A7, then this implication

(L, at my = L, at m;) should be stored.

5. Repeat steps 1-4 for all FOS nets.
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L2 G
0] OR NAND XOR XNOR
1 NOR AND XOR XNOR

Table A7. (L, G) combinations that yield useful contrapositive assertions

The “learning procedure” presented in SOCRATES (18] performs the 0 and 1
implications for all nets of the circuit while we need to do this for only FOS nets.
It is easy to show that the information for all other nets can be derived from this
because of the deterministic nature of our backward implication procedure [2]. Hence
our procedure generates the contrapositive assertions in the 15-valued system and yet
‘requires less computation and storage than the method proposed in [18].

Note the contrapositive assertions in the 15-valued system corresponding to the
implications stored by the above procedure can be generated using Table A6. It has
been shown in [2] that if any implication was not stored by the above procedure,
then either its corresponding contrapositive assertions yield no information or the
information yielded can be derived by using the stored contrapositive assertions and

the backward implication rules.

A.6.2 Conditional Headlines

TOPS [14] extended the concept of headlines introduced in FAN [10] by using circuit
topology to identify more nodes whose value justification could be postponed until the
last stage of test generation. However, none of these schemes take advantage of the
additional restrictions imposed by a particular fault. These restrictions might identify
a potentially larger set of circuit nets whose value justification may be postponed.
Let the output net m; of a gate G be a variant net with a singleton value in
Ty(p.). Consider the tree T which is a subgraph of the dominator forest and whose
root' is net m;. Furthermore consider the subtree T} of T which does not contain any
of the subtrees of T whose roots my, my # m,, correspond to FOS nets. Note that T

corresponds to the largest fanout-free subcircuit whose output is net m; and whose
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inputs are FOBs and/or Pls. Net m, 1s defined to be a conditional headline if and
only if all the nets corresponding to the FOB nodes in T; have singleton values in
Ty(p:).

We now show that if net m, is a conditional headline, then it can be set to either
of the singleton values 0 or 1, subject to the condition that the values of all the FOB
nodes in T can be satisfied. Note that if m; is a conditional headline, then T satisfies
the following properties:

(1) The values in Ty(p;) of the nodes in Ty can only be 0, 1, or 0/1. This is
because if the value of any node includes either D or D, then this must be due to a
fault at node m; which belongs to T; since all FOB nodes have singleten values. But
my € D(my), and hence m; would have a sensitized value.

(1) At least one ieaf of Ty is a PI net whose value in Ty(p;) is 0/1 because m, is
a variant net with a singleton value in Ty(p;).

Consider a node m; in 77 which has a singleton value and whose parent node has
the value 0/1 in Ty(p;). Note that the value of m; is a non-controlling input value
for the gate it drives since Ty(p;) is a deterministic test cube. If we delete from T} all
the subtrees which have any such m; as a root, then the remaining tree corresponds
to a fanout-free circuit whose output is net m; and whose inputs have the value 0/1
in Ty(p;). Thus any required singleton value of net m, can be satisfied by specifying
the unassigned Pls in T subject to the condition that the values of the FOB nets in
T; can be satisfied. Note that this assignment does not interfere with the requirement

of other variant nets since m; is a dominator for all these Pls.

A.6.3 Backward Implication of the Desensitizing Values

In this section we discuss how backweard implication of the desensitizing value from
variant nets may help speed-up the enumeration process. Consider the output net m,

of a gate G, which is variant w.r.t. T;(p;) and has the value L. Let L} be the value




implied at net m, by the values in Ty(p;) of the inputs of G;. We construct a new
test cube T}(p,-) which is identical to T¢(p;) except that net m; has the value L} — L,.
Note that the value L] — L, at net m, desensitizes path p;. Using T{(p;) we backward
imply the value L} — L, at net m; by applying only the backward implication rules
and the stored contrapositive assertions and observe the nets whose values change
in the process. Let m;, 2 < j < J, be the nets where this backward implication
terminates. Note that m; is either a PI or the ontput of a gate whose input values do
not change during this process. Also, let L!,2 < j < J, be the new value obtained at
net m; by the above procedure.

Since the value L] — L, at net m; implies that the value of net m; is L}, we know
from the contrapositive principle that, for any j, 2 < j < J, if the value of net m;
does not contain any of the values in the set L), then the value at net m, will not
contain any of the values in the set L] — L and hence m; will become an invariant net
w.r.t. Ty(p:). A sufficient condition to make m; an invariant net without interfering
with the requirements of other variant nets is that there exists some m; such that
m; € D(m;) and m; is a basis node. If m; is not a basis node but is a conditional
headline w.r.t. Ty(p;), then net m,; can still be made invariant by removing the value
L’ from net m;, provided the conditions that make net m; a conditional headline are

satisfied.

A.7 Examples

Example A1l. Let us reconsider the circuit of Fig. A1l with the fault net 3 s —a -0
to highlight the improvements obtained by the speed-up techniques. Note that tc,
will be identical to that discussed earlier. However, the new d(tc,), shown below, is
different because the use of the contrapositive assertion and the value of net 30 drops

the value 1 from net 24 which has further deterministic implications.




2 5 9 14 15 16 19 20 21 22 23 24 25 26

o6 ¢ D 2 D oD oD 0o/D 0/D 0/D 0/D/D 0/D/D 0/D/D
30 32 33 37 38 39 40 41 42 43
o/p/D o o D/D D/D D/D 1/D/D 1/D/D 1/D/D 1/D/D

As before we continue by setting the value of net 21 to D in tc,. When we construct

d(tc,), further use of the contrapositive drops D from the value of net 24 and more
deterministic changes occur as shown below:
4 6 17 18 20 23 24 25 26 27
111 1 0 0 0D 0/D 0/D 0/1/D
28 29 30 31 36 37 38 39 40 41 42 43
/1D 0 0/D D D D D D 1/D 1/D 1 1/D

Since net 42 has the value 1 in d(tc;) the attempt to sensitize the path through net
39 leads to a contradiction in the construction of tc, and the computation for the
construction of d(tc,) is avoided.

Steps in tc, construction:

42
1N (D/D)=0 (Contradiction)

As before, we now extend the sensitized path through net 37 by setting the value of

net 40 to D in tc, and obtain d(tc,) as shown below:

10 11 34 35 41 43 45
o 0 0 0 1 1 D

The only variant net is net 30 and its dcsensitizing value is 1. Using the procedure
explained in §A.6.3 we backward imply the value 1 at net 30 to get the value 1 at
nets 7 and 8. Since both nets 7 and § are basis nodes and 30 € (D(7) N D(8)), then

removing the value 1 from either net 7 or § would give a test for the fault. a
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Example A2. Consider the class of circuits shown in Fig. A6 with the fault net
3 s—a—0. Note that the ECAT circuit considered by Goel to illustrate the efficiency
of PODEM [12] is an element of this class. Using D(3) = {5,7} we construct tc, as

shown below where all other nets have the value 0/1.

1 2 3 3 4 5 6 7
0/1 0/t 1 D 0/1 D/D 0/1 D/D

The only changes that occur when d(tc,) is constructed is that the value of nets 1
and 2 become 1. Since we have a sensitized path from 3; to the PO and there are
no variant nets, a test has been generated. Note that the algorithm specifies only the
value of PI nets 1 and 2 because it takes full advantage of the linearity of XOR gates.
O

Example A3. In this example we illustrate the use of conditional headlines.
Consider the circuit ir. Fig. A7 whose only basis nodes, other than the PO, are the
Pls. The only possible Ty(p,) for the fault net 2 s — a — 0 is shown below:

1 2 2 3 11 12 23 32 34 35
11 D1 1 1 D D 0 D

Net 34 is the only variant net and its desensitizing value is 1. Thus we backward
imply the value 1 from net 34 which sets nets 31 and 33 to the value 1. The use
of the contrapositive sets the value of nets 20 and 24 to 1. It can now be verified,
using the procedure of §A.6.2, that net 24 is a conditional headline and net 20 is not.
Furthermore, the only condition required for net 24 to have the same independence
property as a headline is that the value 1 at net 12 be satisfied. This condition is
already met because net 3 is a PI. Thus the required value 0 at 24, which makes net
34 an invariant net with the value 0, can be met by specifving the PI nets 4, 5 and

6. o
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Fig. 3 Example whre the subtree corresponding to

a unit-valued node cannot be deleted.
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Fig.A6 Circuit for Example A2
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